Олимпиадные задачи по теме «Алгебраическая геометрия» для 6-8 класса - сложность 3-5 с решениями
Алгебраическая геометрия
НазадИз колоды вынули семь карт, показали всем, перетасовали и раздали Грише и Лёше по три карты, а оставшуюся карту
а) спрятали;
б) отдали Коле.
Гриша и Лёша могут по очереди сообщать вслух любую информацию о своих картах. Могут ли они сообщить друг другу свои карты так, чтобы при этом Коля не смог вычислить местонахождение ни одной из тех карт, которых он не видит? (Гриша и Лёша не договаривались о каком-либо особом способе общения; все переговоры происходят <i>открытым текстом</i>.)
Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется <i>хорошим</i>, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.)
При передаче сообщений используется некоторый шифр. Пусть известно, что каждому из трех шифрованных текстов ЙМЫВОТСЬЛКЪГВЦАЯЯ УКМАПОЧСРКЩВЗАХ ШМФЭОГЧСЙЪКФЬВЫЕАКК соответствовало исходное сообщение МОСКВА. Попробуйте расшифровать три текста ТПЕОИРВНТМОЛАРГЕИАНВИЛЕДНМТААГТДЬТКУБЧКГЕИШНЕИАЯРЯ ЛСИЕМГОРТКРОМИТВАВКНОПКРАСЕОГНАЬЕП РТПАИОМВСВТИЕОБПРОЕННИГЬКЕЕАМТАЛВТДЬСОУМЧШСЕОНШЬИАЯК при условии, что двум из них соответствует одно и то же сообщение. Сообщениями являются известные крылатые фразы. (Задача с сайта<a href="http://www.cryptography.ru">www.cryptography.ru</a>.)