Олимпиадные задачи из источника «параграф 1. Четность» для 9-11 класса - сложность 1-3 с решениями

Предположим, что требуется передать сообщение, состоящее из <i>n</i>² нулей и единиц. Запишем его в виде квадратной таблици <i>n</i>×<i>n</i>. Допишем к каждой строке сумму её элементов по модулю 2. Получится еще один столбец высоты <i>n</i>. Аналогично поступим с каждым столбцом (в том числе найдём и сумму элементов дописанного столбца). Например, если требуется передать сообщение 0111, то таблица 2×2 (рис. слева) окажется дополненной до таблицы 3×3 (рис. справа). <div align="center"><img src="/storage/problem-media/60648/problem_60648_img_2.gif"></div>  а) Докажите, что если при передаче расширенной таблицы  (<i>n</i>+1)×(<i>n</i>+1)  произойдёт одна ошибка, то эту ошибку можно б...

В пробирке находятся марсианские амёбы трёх типов <i>A, B</i> и <i>C</i>. Две амёбы любых двух разных типов могут слиться в одну амёбу третьего типа. После нескольких таких слияний в пробирке оказалась одна амёба. Каков её тип, если исходно амёб типа <i>A</i> было 20 штук, типа <i>B</i> – 21 штука и типа <i>C</i> – 22 штуки?

В клетках квадратной таблицы 4×4 расставлены знаки  +  и  – ,   как показано на рисунке. <div align="center"><img src="/storage/problem-media/60645/problem_60645_img_2.gif"></div>Разрешается одновременно менять знак во всех клетках, расположенных в одной строке, в одном столбце или на прямой, параллельной какой-нибудь диагонали (в частности, можно менять знак в любой угловой клетке). Докажите, что, сколько бы мы ни производили таких перемен знака, нам не удастся получить таблицу из одних плюсов.

Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел <i>a</i> и <i>b</i> из одного множества число  <i>ab</i> – 1  принадлежало другому?

Представим себе большой куб, склеенный из 27 меньших кубиков. Термит садится на центр грани одного из наружных кубиков и начинает прогрызать ход. Побывав в кубике, термит к нему уже не возвращается. Движется он при этом всегда параллельно какому-нибудь ребру большого куба. Может ли термит прогрызть все 26 внешних кубиков и закончить свой ход в центральном кубике? Если возможно, покажите, каким должен быть путь термита.

а) Может ли ладья перейти из одного угла шахматной доски в противоположный угол (по диагонали), побывав по одному разу на всех 64 клетках?

б) Тот же вопрос для коня.

Город имеет форму квадрата 5×5: <div align="CENTER"><img width="81" height="81" align="BOTTOM" border="0" src="/storage/problem-media/60632/problem_60632_img_2.gif"></div>Какую наименьшую длину может иметь маршрут, если нужно пройти по каждой улице этого города и вернуться в прежнее место? (По каждой улице можно проходить любое число раз.)

В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.

Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

Дан выпуклый 2<i>n</i>-угольник <i>A</i><sub>1</sub>...<i>A</i><sub>2<i>n</i></sub>. Внутри него взята точка <i>P</i>, не лежащая ни на одной из диагоналей.

Докажите, что точка <i>P</i> принадлежит чётному числу треугольников с вершинами в точках <i>A</i><sub>1</sub>,..., <i>A</i><sub>2<i>n</i></sub>.

Есть 101 монета, из которых 50 фальшивых, отличающихся по весу на 1 грамм от настоящих. Петя взял одну монету и за одно взвешивание на весах со стрелкой, показывающей разность весов на чашках, хочет определить фальшивая ли она. Сможет ли он это сделать?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка