Олимпиадные задачи из источника «параграф 3. Тригонометрия» для 3-9 класса - сложность 3-4 с решениями
параграф 3. Тригонометрия
НазадНайдите сумму:<div align="CENTER"> <i>arctg</i> $\displaystyle {\dfrac{r}{1+a_1\cdot a_2}}$ + <i>arctg</i> $\displaystyle {\dfrac{r}{1+a_2\cdot a_3}}$ +...+ <i>arctg</i> $\displaystyle {\dfrac{r}{1+a_n\cdot a_{n+1}}}$, </div>если числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,...,<i>a</i><sub>n + 1</sub>образуют арифметическую прогрессию с разностью<i>r</i>(<i>a</i><sub>1</sub>> 0,<i>r</i>> 0).
Найдите сумму:<div align="CENTER"> <i>arctg</i> $\displaystyle {\dfrac{x}{1+1\cdot2x^2}}$ + <i>arctg</i> $\displaystyle {\dfrac{x}{1+2\cdot 3x^2}}$ +...+ <i>arctg</i> $\displaystyle {\dfrac{x}{1+n\cdot(n+1)x^2}}$ (<i>x</i> > 0). </div>
Найдите алгебраическую связь между углами$\alpha$,$\beta$и$\gamma$, если известно, что<div align="CENTER"> <i>tg</i> $\displaystyle \alpha$ + <i>tg</i> $\displaystyle \beta$ + <i>tg</i> $\displaystyle \gamma$ = <i>tg</i> $\displaystyle \alpha$<sup> . </sup><i>tg</i> $\displaystyle \beta$<sup> . </sup><i>tg</i> $\displaystyle \gamma$. </div>