Олимпиадные задачи из источника «параграф 1. Симметрия помогает решить задачу» для 8 класса - сложность 2-5 с решениями
параграф 1. Симметрия помогает решить задачу
НазадДаны выпуклый<i>n</i>-угольник с попарно непараллельными сторонами и точка <i>O</i>внутри его. Докажите, что через точку <i>O</i>нельзя провести более <i>n</i>прямых, каждая из которых делит площадь<i>n</i>-угольника пополам.
Двое игроков поочередно выкладывают на прямоугольный стол пятаки. Монету разрешается класть только на свободное место. Проигрывает тот, кто не может сделать очередной ход. Докажите, что первый игрок всегда может выиграть.
Пусть<i>P</i>- середина стороны<i>AB</i>выпуклого четырехугольника<i>ABCD</i>. Докажите, что если площадь треугольника<i>PDC</i>равна половине площади четырехугольника<i>ABCD</i>, то стороны<i>BC</i>и<i>AD</i>параллельны.