Олимпиадные задачи из источника «Вводные задачи» для 6-7 класса - сложность 1-4 с решениями

Биссектриса внешнего угла при вершине <i>C</i>треугольника <i>ABC</i>пересекает описанную окружность в точке <i>D</i>. Докажите, что <i>AD</i>=<i>BD</i>.

Центр вписанной окружности треугольника <i>ABC</i>симметричен центру описанной окружности относительно стороны <i>AB</i>. Найдите углы треугольника <i>ABC</i>.

а) Из точки<i>A</i>, лежащей вне окружности, выходят лучи<i>AB</i>и<i>AC</i>, пересекающие эту окружность. Докажите, что величина угла<i>BAC</i>равна полуразности угловых величин дуг окружности, заключенных внутри этого угла.б) Вершина угла <i>BAC</i> расположена внутри окружности. Докажите, что величина угла <i>BAC</i> равна полусумме угловых величин дуг окружности, заключенных внутри угла <i>BAC</i> и внутри угла, симметричного ему относительно вершины <i>A</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка