Олимпиадные задачи из источника «параграф 6. Разные задачи» для 3-8 класса - сложность 2-3 с решениями
параграф 6. Разные задачи
НазадНа плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
На плоскости дано бесконечное множество прямоугольников, вершины каждого из которых расположены в точках с координатами (0, 0), (0,<i>m</i>), (<i>n</i>, 0), (<i>n</i>,<i>m</i>), где <i>n</i>и <i>m</i> — целые положительные числа (свои для каждого прямоугольника). Докажите, что из этих прямоугольников можно выбрать два так, чтобы один содержался в другом.
На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что хотя бы один из треугольников с вершинами в этих точках не является остроугольным.
Можно ли на плоскости расположить 1000 отрезков так, чтобы каждый отрезок обоими концами упирался строго внутрь других отрезков?