Олимпиадные задачи из источника «глава 23. Делимость, инварианты, раскраски» для 5-7 класса - сложность 2 с решениями

Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.

На плоскости лежат три шайбы <i>A, B</i> и <i>C</i>. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая <i>l</i> пересекает её ровно в 1985 точках.

Докажите, что существует прямая, пересекающая эту ломаную более чем в 1985 точках.

Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:

  а) (2<i>n</i>+1)-угольника;  б) 2<i>n</i>-угольника?

Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка