Олимпиадные задачи из источника «глава 3. Окружности» для 7 класса - сложность 4 с решениями

Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком плюс, а участки пути, по которым мы удалялись от центра, — со знаком минус. Докажите, что для любого такого пути сумма длин участков пути, взятых с указанными знаками, равна нулю.

На каждой стороне четырехугольника <i>ABCD</i>взято по две точки, и они соединены так, как показано на рис. Докажите, что если все пять заштрихованных четырехугольников описанные, то четырехугольник <i>ABCD</i>тоже описанный. <div align="center"><img src="/storage/problem-media/56664/problem_56664_img_2.gif" border="1"></div>

Дан параллелограмм <i>ABCD</i>. Вневписанная окружность треугольника<i>ABD</i>касается продолжений сторон <i>AD</i>и <i>AB</i>в точках <i>M</i>и <i>N</i>. Докажите, что точки пересечения отрезка <i>MN</i>с <i>BC</i>и <i>CD</i>лежат на вписанной окружности треугольника <i>BCD</i>.

К двум окружностям различного радиуса проведены общие внешние касательные <i>AB</i>и <i>CD</i>. Докажите, что четырехугольник <i>ABCD</i>описанный тогда и только тогда, когда окружности касаются.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка