Олимпиадные задачи из источника «параграф 3. Теорема Птолемея» для 10-11 класса - сложность 4 с решениями
параграф 3. Теорема Птолемея
НазадБиссектриса угла <i>A</i>треугольника <i>ABC</i>пересекает описанную окружность в точке <i>D</i>. Докажите, что <i>AB</i>+<i>AC</i>$\leq$2<i>AD</i>.
Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны <i>d</i><sub>a</sub>,<i>d</i><sub>b</sub>и <i>d</i><sub>c</sub>. Докажите, что <i>d</i><sub>a</sub>+<i>d</i><sub>b</sub>+<i>d</i><sub>c</sub>=<i>R</i>+<i>r</i>.
Пусть $\alpha$=$\pi$/7. Докажите, что ${\frac{1}{\sin\alpha }}$=${\frac{1}{\sin 2\alpha }}$+${\frac{1}{\sin 3\alpha }}$.