Олимпиадные задачи из источника «глава 6. Многоугольники» для 10 класса - сложность 4-5 с решениями
глава 6. Многоугольники
НазадДокажите, что точки пересечения противоположных сторон (если эти стороны не параллельны) вписанного шестиугольника лежат на одной прямой (Паскаль).
а) Противоположные стороны выпуклого шестиугольника<i>ABCDEF</i>попарно параллельны. Докажите, что этот шестиугольник вписанный тогда и только тогда, когда его диагонали<i>AD</i>,<i>BE</i>и<i>CF</i>равны. б) Докажите аналогичное утверждение для невыпуклого (возможно, самопересекающегося) шестиугольника.
Правильный пятиугольник <i>ABCDE</i>со стороной <i>a</i>вписан в окружность <i>S</i>. Прямые, проходящие через его вершины перпендикулярно сторонам, образуют правильный пятиугольник со стороной <i>b</i>(см. рис.). Сторона правильного пятиугольника, описанного около окружности <i>S</i>, равна <i>c</i>. Докажите, что <i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>=<i>c</i><sup>2</sup>.
<div align="center"><img src="/storage/problem-media/57059/problem_57059_img_2.gif" border="1"></div>
В равностороннем (неправильном) пятиугольнике <i>ABCDE</i>угол <i>ABC</i>вдвое больше угла <i>DBE</i>. Найдите величину угла <i>ABC</i>.
Окружности $\alpha$,$\beta$,$\gamma$и $\delta$касаются данной окружности в вершинах <i>A</i>,<i>B</i>,<i>C</i>и <i>D</i>выпуклого четырехугольника <i>ABCD</i>. Пусть <i>t</i><sub>$\scriptstyle \alpha$$\scriptstyle \beta$</sub> — длина общей касательной к окружностям $\alpha$и $\beta$(внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее); <i>t</i><sub>$\scriptstyle \beta$$\scriptstyle \gamma$</sub>,<i>t</i><sub>$\scriptstyle \gamma$$\scriptstyle \delta$</sub>и т. д. определяются аналогично. Докажите, что <i>t</i><sub>$\scriptstyle \alpha$$\scriptstyle \beta$</sub><...
Биссектриса угла <i>A</i>треугольника <i>ABC</i>пересекает описанную окружность в точке <i>D</i>. Докажите, что <i>AB</i>+<i>AC</i>$\leq$2<i>AD</i>.
Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны <i>d</i><sub>a</sub>,<i>d</i><sub>b</sub>и <i>d</i><sub>c</sub>. Докажите, что <i>d</i><sub>a</sub>+<i>d</i><sub>b</sub>+<i>d</i><sub>c</sub>=<i>R</i>+<i>r</i>.
Пусть $\alpha$=$\pi$/7. Докажите, что ${\frac{1}{\sin\alpha }}$=${\frac{1}{\sin 2\alpha }}$+${\frac{1}{\sin 3\alpha }}$.
Из вершин выпуклого четырехугольника опущены перпендикуляры на диагонали. Докажите, что четырехугольник, образованный основаниями перпендикуляров, подобен исходному четырехугольнику.
Четырехугольник <i>ABCD</i>выпуклый; точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>и <i>D</i><sub>1</sub>таковы, что <i>AB</i>||<i>C</i><sub>1</sub><i>D</i><sub>1</sub>,<i>AC</i>||<i>B</i><sub>1</sub><i>D</i><sub>1</sub>и т. д. для всех пар вершин. Докажите, что четырехугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub>тоже выпуклый, причем $\angle$<i>A</i>+$\angle$<i>C</i><sub>1<...
Докажите, что два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями.