Олимпиадные задачи из источника «параграф 10. Многоугольники» для 5-9 класса - сложность 2 с решениями

а) Докажите, что если длины проекций отрезка на две взаимно перпендикулярные прямые равны <i>a</i>и <i>b</i>, то его длина не меньше (<i>a</i>+<i>b</i>)/$\sqrt{2}$. б) Длины проекций многоугольника на координатные оси равны <i>a</i>и <i>b</i>. Докажите, что его периметр не меньше $\sqrt{2}$(<i>a</i>+<i>b</i>).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка