Олимпиадные задачи из источника «параграф 10. Многоугольники» для 5-9 класса - сложность 2 с решениями
параграф 10. Многоугольники
Назада) Докажите, что если длины проекций отрезка на две взаимно перпендикулярные прямые равны <i>a</i>и <i>b</i>, то его длина не меньше (<i>a</i>+<i>b</i>)/$\sqrt{2}$. б) Длины проекций многоугольника на координатные оси равны <i>a</i>и <i>b</i>. Докажите, что его периметр не меньше $\sqrt{2}$(<i>a</i>+<i>b</i>).