Олимпиадные задачи из источника «выпуск 6»

Натуральные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> таковы, что каждое не превышает своего номера  (<i>a<sub>k</sub> ≤ k</i>)  и сумма всех чисел – чётное число. Доказать, что одна из сумм  <i>a</i><sub>1</sub> ± <i>a</i><sub>2</sub> ± ... ± <i>a<sub>n</sub></i>  равна нулю.

Дано число<i>x</i>, большее 1. Обязательно ли имеет место равенство<div align="CENTER"> [$\displaystyle \sqrt{[\sqrt{x}]}$] = [$\displaystyle \sqrt{\sqrt{x}}$]? </div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка