Олимпиадные задачи из источника «выпуск 3»
выпуск 3
НазадВ прямоугольной таблице <i>m</i> строк и <i>n</i> столбцов (<i>m < n</i>). В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями <i>d</i><sub>1</sub>, <i>d</i><sub>2</sub>, <i>d</i><sub>3</sub>, ... . Может ли случиться, что при этом сумма <sup>1</sup>/<sub><i>d</i><sub>1</sub></sub> + <sup>1</sup>/<sub><i>d</i><sub>2</sub></sub> + ... + <sup>1</sup>/<i><sub>d<sub>k</sub></sub></i> не превышает 0,9? Рассмотрите случаи:
а) общее число прогрессий конечно;
б) прогрессий бесконечное число (в этом случае условие нужно понимат...
Можно ли так выбрать шар, треугольную пирамиду и плоскость, чтобы всякая плоскость, параллельная выбранной, пересекала шар и пирамиду по фигурам равной площади?