Олимпиадные задачи из источника «выпуск 6» для 10 класса - сложность 3 с решениями
выпуск 6
НазадПусть <i>n</i> и <i>b</i> – натуральные числа. Через <i>V</i>(<i>n, b</i>) обозначим число разложений <i>n</i> на сомножители, каждый из которых больше <i>b</i> (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12, так что <i>V</i>(36, 2) = 5). Докажите, что <i>V</i>(<i>n, b</i>) < <sup><i>n</i></sup>/<sub><i>b</i></sub>.
Внутри окружности радиуса 1 расположена замкнутая ломаная (самопересекающаяся), содержащая 51 звено, причём известно, что длина каждого звена равна <img align="absmiddle" src="/storage/problem-media/98138/problem_98138_img_2.gif"> . Для каждого угла этой ломаной рассмотрим треугольник, двумя сторонами которого служат звенья ломаной, образующие этот угол (таких треугольников всего 51). Докажите, что сумма площадей этих треугольников не меньше, чем утроенная площадь правильного треугольника, вписанного в окружность.