Олимпиадные задачи из источника «выпуск 3»

a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.

б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.

В таблице из <i>n</i> столбцов и 2<sup><i>n</i></sup> строк, в которых выписаны все возможные различные наборы из <i>n</i> чисел 1 и –1, некоторые числа заменены нулями. Докажите, что можно выбрать некоторое непустое подмножество строк так, что:

  а) сумма всех чисел в выбранных строках равна 0;

  б) сумма всех выбранных строк есть нулевая строка.

(Строки складываются покоординатно как векторы.)

В равнобедренном треугольнике <i>ABC</i>  (<i>AB = AC</i>)  угол <i>A</i> равен α. На стороне <i>AB</i> взята точка <i>D</i> так, что  <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>.  Найдите сумму  <i>n</i> – 1  углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей:

  а) при  <i>n</i> = 3;

  б) при произвольном <i>n</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка