Олимпиадные задачи из источника «16. Нитки, ножницы, ластик» для 6-8 класса - сложность 2-4 с решениями

На плоскости даны 16 точек (см. рисунок).<div align="center"><img src="/storage/problem-media/104121/problem_104121_img_2.gif"></div>   а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.

  б) Покажите, что можно обойтись стиранием шести точек.

  в) Найдите минимальное число точек, которые достаточно стереть для этого.

На плоскости даны 9 точек (см. рисунок). Перечеркните их все четырьмя прямыми отрезками, не отрывая карандаша от бумаги. <div align="center"><img src="/storage/problem-media/104120/problem_104120_img_2.gif"></div>

На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка