Олимпиадные задачи из источника «1997/98» для 3-7 класса - сложность 1-2 с решениями

Пусть <i>m</i> и <i>n</i> – целые числа. Докажите, что  <i>mn</i>(<i>m + n</i>)  – чётное число.

Докажите, что  1 + 2<sup>77</sup> + 3<sup>77</sup> + ... + 1996<sup>77</sup>  делится на 1997.

Делится ли  222<sup>555</sup> + 555<sup>222</sup>  на 7?

Докажите, что уравнение  3<i>x</i>² + 2 = <i>y</i>²  нельзя решить в целых числах.

Найдите самое маленькое <i>k</i>, при котором <i>k</i>! делится на 2040.

На хоккейном поле лежат три шайбы<i>А</i>,<i>В</i>и<i>С</i>. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими. Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?

Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка