Олимпиадные задачи из источника «1997/98» для 7 класса - сложность 1-5 с решениями
1997/98
НазадЧетыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.
Пусть <i>m</i> и <i>n</i> – целые числа. Докажите, что <i>mn</i>(<i>m + n</i>) – чётное число.
Докажите, что 1 + 2<sup>77</sup> + 3<sup>77</sup> + ... + 1996<sup>77</sup> делится на 1997.
Делится ли 222<sup>555</sup> + 555<sup>222</sup> на 7?
Докажите, что уравнение 3<i>x</i>² + 2 = <i>y</i>² нельзя решить в целых числах.
Найдите самое маленькое <i>k</i>, при котором <i>k</i>! делится на 2040.
На хоккейном поле лежат три шайбы<i>А</i>,<i>В</i>и<i>С</i>. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими. Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?