Олимпиадные задачи из источника «1990 год» для 8 класса - сложность 2 с решениями
Изобразите множество середин всех отрезков, концы которых лежат а) на данной полуокружности; б) на диагоналях данного квадрата.
Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.
Существуют ли а) 5, б) 6 простых чисел, образующих арифметическую прогрессию?
Верно ли утверждение: "Если две стороны и три угла одного треугольника равны двум сторонам и трём углам другого треугольника, то такие треугольники равны"?