Олимпиадные задачи из источника «9,10 класс, 1 тур»

Найти все прямые в пространстве, проходящие через данную точку<i>M</i>на данном расстоянии<i>d</i>от данной прямой<i>AB</i>.

Докажите, что каково бы ни было целое число <i>n</i>, среди чисел <i>n,  n</i> + 1,  <i>n</i> + 2,  ...,  <i>n</i> + 9  есть хотя бы одно, взаимно простое с остальными девятью.

Вычислить с пятью десятичными знаками (то есть с точностью до 0,00001) произведение:   <img align="MIDDLE" src="/storage/problem-media/76542/problem_76542_img_2.gif">

В каком из выражений:  (1 – <i>x</i>² + <i>x</i>³)<sup>1000</sup>,   (1 + <i>x</i>² – <i>x</i>³)<sup>1000</sup>  после раскрытия скобок и приведения подобных членов больший коэффициент при <i>x</i><sup>20</sup>?

Дан выпуклый пятиугольник<i>ABCDE</i>. Сторонами, противоположными вершинам<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>,<i>E</i>, мы называем соответственно отрезки<i>CD</i>,<i>DE</i>,<i>EA</i>,<i>AB</i>,<i>BC</i>. Докажите, что если произвольную точку<i>M</i>, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка