Олимпиадные задачи из источника «1953 год» для 2-9 класса - сложность 1 с решениями

Решить систему

   <i>x</i><sub>1</sub> + 2<i>x</i><sub>2</sub> + 2<i>x</i><sub>3</sub> + 2<i>x</i><sub>4</sub> + 2<i>x</i><sub>5</sub> = 1,

   <i>x</i><sub>1</sub> + 3<i>x</i><sub>2</sub> + 4<i>x</i><sub>3</sub> + 4<i>x</i><sub>4</sub> + 4<i>x</i><sub>5</sub> = 2,

   <i>x</i><sub>1</sub> + 3<i>x</i><sub>2</sub> + 5<i>x</i><sub>3</sub> + 6<i>x</i><sub>4</sub> + 6<i>x</i><sub>5</sub> = 3,

   <i>x</i><sub>1&lt...

Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.

Найти геометрическое место точек, координаты которых (<i>x</i>,<i>y</i>) удовлетворяют соотношениюsin(<i>x</i>+<i>y</i>) = 0.

Три окружности попарно касаются друг друга. Через три точки касания проводим окружность. Доказать, что эта окружность перпендикулярна к каждой из трёх исходных. (Углом между двумя окружностями в точке их пересечения называется угол, образованный их касательными в этой точке.)

Докажите, что при любом натуральном <i>n</i> число  <i>n</i>² + 8<i>n</i> + 15  не делится на  <i>n</i> + 4.

Доказать, что в трапеции сумма углов при меньшем основании больше, чем при большем.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка