Олимпиадные задачи из источника «8 класс, 2 тур» для 10-11 класса - сложность 2-5 с решениями

Даны четыре прямые<i>m</i><sub>1</sub>,<i>m</i><sub>2</sub>,<i>m</i><sub>3</sub>,<i>m</i><sub>4</sub>, пересекающиеся в одной точке<i>O</i>. Через произвольную точку<i>A</i><sub>1</sub>прямой<i>m</i><sub>1</sub>проводим прямую, параллельную прямой<i>m</i><sub>4</sub>, до пересечения с прямой<i>m</i><sub>2</sub>в точке<i>A</i><sub>2</sub>, через<i>A</i><sub>2</sub>проводим прямую, параллельную<i>m</i><sub>1</sub>, до пересечения с<i>m</i><sub>3</sub>в точке<i>A</i><sub>3</sub...

Дано число  <i>H</i> = 2·3·5·7·11·13·17·19·23·29·31·37  (произведение простых чисел). Пусть 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, ..., <i>H</i> – все его делители, выписанные в порядке возрастания. Под рядом делителей выпишем ряд из единиц и минус единиц по следующему правилу: под единицей 1, под числом, которое разлагается на чётное число простых сомножителей, 1, и под числом, которое разлагается на нечётное число простых сомножителей, –1. Доказать, что сумма чисел полученного ряда равна 0.

Из клетчатой бумаги вырезан квадрат 17×17. В клетках квадрата произвольным образом написаны числа 1, 2, 3, ..., 70 по одному и только одному числу в каждой клетке. Доказать, что существуют такие четыре различные клетки с центрами в точках <i>A, B, C, D</i>, что  <i>AB = CD,  AD = BC</i>  и сумма чисел, стоящих в клетках с центрами в <i>A</i> и <i>C</i>, равна сумме чисел в клетках с центрами <i>B</i> и <i>D</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка