Олимпиадные задачи из источника «1956 год» для 2-8 класса - сложность 3-5 с решениями
В кубе, ребро которого равно 13, выбрано 1956 точек. Можно ли в этот куб поместить кубик с ребром 1 так, чтобы внутри него не было ни одной выбранной точки?
На столе лежат 15 журналов, закрывающих его целиком. Докажите, что можно забрать семь журналов так, чтобы оставшиеся журналы закрывали не меньше 8/15 площади стола.
(<i>Эту задачу не решил никто из участников олимпиады</i>.)
100 чисел, среди которых есть положительные и отрицательные, выписаны в ряд. Подчеркнуто, во-первых, каждое положительное число, а во-вторых, каждое число, сумма которого со следующим положительна. Может ли сумма всех подчеркнутых чисел оказаться отрицательной? Равной нулю?