Олимпиадные задачи из источника «10 класс, 2 тур» для 11 класса - сложность 3 с решениями
10 класс, 2 тур
НазадДаны<i>n</i>комплексных чисел<i>C</i><sub>1</sub>,<i>C</i><sub>2</sub>,...,<i>C</i><sub>n</sub>, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого<i>n</i>-угольника. Доказать, что если комплексное число<i>z</i>обладает тем свойством, что<div align="CENTER"> $\displaystyle {\frac{1}{z-C_1}}$ + $\displaystyle {\frac{1}{z-C_2}}$ + ... + $\displaystyle {\frac{1}{z-C_n}}$ = 0, </div>то точка плоскости, соответствующая<i>z</i>, лежит внутри этого<i>n</i>-угольника.