Олимпиадные задачи из источника «10 класс, 2 тур» для 2-11 класса - сложность 1-2 с решениями

Два концентрических круга поделены на 2<i>k</i>равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.

Пусть<i>ABCD</i>— пространственный четырёхугольник, точки<i>K</i><sub>1</sub>и<i>K</i><sub>2</sub>делят соответственно стороны<i>AB</i>и<i>DC</i>в отношении$\alpha$, точки<i>K</i><sub>3</sub>и<i>K</i><sub>4</sub>делят соответственно стороны<i>BC</i>и<i>AD</i>в отношении$\beta$. Доказать, что отрезки<i>K</i><sub>1</sub><i>K</i><sub>2</sub>и<i>K</i><sub>3</sub><i>K</i><sub>4</sub>пересекаются.

Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка