Олимпиадные задачи из источника «8 класс, 2 тур»

Доказать, что шахматную доску размером 4 на 4 нельзя обойти ходом шахматного коня, побывав на каждом поле ровно один раз.

Даны два пересекающихся отрезка длины 1,<i>AB</i>и<i>CD</i>. Доказать, что по крайней мере одна из сторон четырёхугольника<i>ABCD</i>не меньше${\frac{\sqrt{2}}{2}}$.

Дан треугольник<i>ABC</i>. Построим треугольник, стороны которого касаются вневписанных окружностей этого треугольника. Зная углы исходного треугольника, найти углы построенного.

Даны 12 чисел,<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,...<i>a</i><sub>12</sub>, причём имеют место следующие неравенства:<div align="CENTER"> <table> <tr valign="MIDDLE"><td align="RIGHT"><i>a</i><sub>2</sub>(<i>a</i><sub>1</sub> - <i>a</i><sub>2</sub> + <i>a</i><sub>3</sub>)</td> <td align="CENTER"><</td> <td align="LEFT">0</td> </tr> <tr valign="MIDDLE"><td align="RIGHT"><i>a</i><sub>3</sub>(<i>a</i><sub>2</sub> - <i>a</i&...

Дано <i>n</i> чисел, <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, при этом  <i>x<sub>k</sub></i> = ±1.  Доказать, что если  <i>x</i><sub>1</sub><i>x</i><sub>2</sub> + <i>x</i><sub>2</sub><i>x</i><sub>3</sub> + ... + <i>x<sub>n</sub>x</i><sub>1</sub> = 0,  то <i>n</i> делится на 4.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка