Олимпиадные задачи из источника «9 класс, 2 тур» для 9-11 класса - сложность 3 с решениями

В углах шахматной доски 3 на 3 стоят кони: в верхних углах — белые, в нижних — чёрные. Доказать, что для того, чтобы им поменяться местами, потребуется не менее 16 ходов. (Кони не обязательно ходят сначала белый, потом чёрный. Ходом считается ход одного коня.)

<i>n</i>отрезков длины 1 пересекаются в одной точке. Доказать, что хотя бы одна сторона 2<i>n</i>-угольника, образованного их концами, не меньше стороны правильного 2<i>n</i>-угольника, вписанного в окружность диаметра 1.

Даны сто чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>,..., <i>x</i><sub>100</sub>, сумма которых равна 1. При этом абсолютные величины разностей  <i>x</i><sub><i>k</i>+1</sub> – <i>x<sub>k</sub></i>  меньше <sup>1</sup>/<sub>50</sub> каждая.

Доказать, что из них можно выбрать 50 чисел так, чтобы сумма выбранных отличалась от половины не больше, чем на одну сотую.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка