Олимпиадные задачи из источника «9 класс, 2 тур»
9 класс, 2 тур
НазадВ квадрате со стороной 100 расположено<i>N</i>кругов радиуса 1, причём всякий отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы один круг. Доказать, что<i>N</i>$\ge$400.<i>Примечание Problems.Ru</i>: Рассматриваются <i>открытые</i> круги, то есть круги без ограничивающей их окружности.
Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника.
Доказать, что никакую прямоугольную шахматную доску шириной в 4 клетки нельзя обойти ходом шахматного коня, побывав на каждом поле по одному разу и последним ходом вернувшись на исходную клетку.
Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.
Имеется<i>m</i>точек, некоторые из которых соединены отрезками так, что каждая соединена с<i>l</i>точками. Какие значения может принимать<i>l</i>?