Олимпиадные задачи из источника «9 класс, 2 тур» для 8-10 класса - сложность 4 с решениями
9 класс, 2 тур
НазадВ квадрате со стороной 100 расположено<i>N</i>кругов радиуса 1, причём всякий отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы один круг. Доказать, что<i>N</i>$\ge$400.<i>Примечание Problems.Ru</i>: Рассматриваются <i>открытые</i> круги, то есть круги без ограничивающей их окружности.
Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.