Олимпиадные задачи из источника «10 класс, 1 тур» для 2-8 класса - сложность 2-5 с решениями
10 класс, 1 тур
НазадДаны два пересекающихся луча<i>AС</i>и<i>BD</i>. На этих лучах выбираются точки<i>M</i>и<i>N</i>(соответственно) так, что<i>AM</i>=<i>BN</i>. Найти положение точек<i>M</i>и<i>N</i>, при котором длина отрезка<i>MN</i>минимальна.
Даны<i>n</i>карточек; на обеих сторонах каждой карточки написано по одному из чисел1, 2,...,<i>n</i>, причём так, что каждое число встречается на всех<i>n</i>карточках ровно два раза. Доказать, что карточки можно разложить на столе так, что сверху окажутся все числа:1, 2,...,<i>n</i>.