Олимпиадные задачи из источника «1964 год» для 4-7 класса - сложность 3 с решениями
Через противоположные вершины<i>A</i>и<i>C</i>четырёхугольника<i>ABCD</i>проведена окружность, пересекающая стороны<i>AB</i>,<i>BC</i>,<i>CD</i>и<i>AD</i>соответственно в точках<i>M</i>,<i>N</i>,<i>P</i>и<i>Q</i>. Известно, что<i> BM = BN = DP = DQ = R </i>, где<i>R</i>— радиус данной окружности.
Доказать, что в таком случае сумма углов<i>B</i>и<i>D</i>данного четырёхугольника равна120<sup><tt>o</tt></sup>.
На листе бумаги проведено 11 горизонтальных и 11 вертикальных прямых, точки пересечения которых называются <i>узлами, звеном</i>" мы будем называть отрезок прямой, соединяющий два соседних узла одной прямой. Какое наименьшее число звеньев надо стереть, чтобы после этого в каждом узле сходилось не более трёх звеньев?