Олимпиадные задачи из источника «8 класс, 1 тур»
8 класс, 1 тур
Назад12 теннисистов участвовали в турнире. Известно, что каждые два теннисиста сыграли между собой ровно один раз и не было ни одного теннисиста, проигравшего все встречи. Доказать, что найдутся такие теннисисты <i>A, B, C</i>, что <i>A</i> выиграл у <i>B, B</i> у <i>C, C</i> у <i>A</i>. (В теннисе ничьих не бывает.)
На каждую чашку весов положили <i>k</i> гирь, занумерованных числами от 1 до <i>k</i>, причём левая чашка перевесила. Оказалось, что если поменять чашками любые две гири с одинаковыми номерами, то всегда либо правая чашка начинает перевешивать, либо чашки приходят в равновесие. При каких <i>k</i> это возможно?
На 99 карточках пишутся числа 1, 2, 3, ..., 99. Затем карточки перемешиваются, раскладываются чистыми сторонами вверх и на чистых сторонах снова пишутся числа 1, 2, 3, 4, ..., 99. Для каждой карточки числа, стоящие на ней, складываются и 99 полученных сумм перемножаются. Доказать, что в результате получится чётное число.