Олимпиадные задачи из источника «8 класс, 2 тур» для 2-9 класса - сложность 2-4 с решениями

В маленьком зоопарке из клетки убежала обезьяна. Её ловят два сторожа. И сторожа, и обезьяна бегают только по дорожкам. Всего в зоопарке шесть прямолинейных дорожек: три длинные образуют правильный треугольник, три короткие соединяют середины его сторон. В каждый момент времени обезьяна и сторожа видят друг друга. Смогут ли сторожа поймать обезьяну, если обезьяна бегает <b>в 3 раза быстрее</b> сторожей? (Вначале оба сторожа находятся в одной вершине треугольника, а обезьяна в другой.)

Внутри круга радиуса 1 м расположены<i>n</i>точек. Доказать, что в круге или на его границе существует точка, сумма расстояний от которой до всех точек не меньше<i>n</i>метров.

На окружности радиуса 1 отмечено 100 точек. Доказать, что на этой окружности можно найти такую точку, чтобы сумма расстояний от неё до всех отмеченных точек была больше 100.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка