Олимпиадные задачи из источника «9 класс, 1 тур» для 7-10 класса - сложность 2 с решениями
9 класс, 1 тур
НазадВ городе <i>N</i> с каждой станции метро на любую другую можно проехать. Доказать, что одну из станций можно закрыть на ремонт без права проезда через неё так, чтобы с любой из оставшихся станций можно было по-прежнему проехать на любую другую.
Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.
На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.