Олимпиадные задачи из источника «1975 год» для 10-11 класса - сложность 2 с решениями

Какое из двух чисел больше:   а)   <img src="/storage/problem-media/79303/problem_79303_img_2.gif">   (<i>n</i> двоек) или   <img src="/storage/problem-media/79303/problem_79303_img_3.gif"> (<i>n</i> − 1  тройка);   б)   <img src="/storage/problem-media/79303/problem_79303_img_3.gif">   (<i>n</i> троек) или   <img src="/storage/problem-media/79303/problem_79303_img_4.gif">   (<i>n</i> − 1  четвёрка).

В окружность вписан выпуклый 7-угольник. Известно, что какие-то три его угла равны120<sup><tt>o</tt></sup>. Доказать, что найдутся две его стороны, имеющие одинаковую длину.

На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?

Точка<i>A</i>расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку<i>A</i>отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку<i>A</i>можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.

Найти все действительные решения уравнения с четырьмя неизвестными:   <i>x</i>² + <i>y</i>² + <i>z</i>² + <i>t</i>² = <i>x</i>(<i>y + z + t</i>).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка