Олимпиадные задачи из источника «7 класс» для 5-7 класса - сложность 2-3 с решениями
7 класс
НазадПусть<i>AB</i>— основание трапеции<i>ABCD</i>. Доказать, что если<i>AC</i>+<i>BC</i>=<i>AD</i>+<i>BD</i>, то трапеция<i>ABCD</i>— равнобокая.
Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно выбрать два числа, не являющихся взаимно простыми.
В марте 1987 года учитель решил провести 11 занятий математического кружка. Доказать, что если по субботам и воскресеньям кружок не проводить, то в марте найдутся три дня подряд, в течение которых не будет ни одного занятия кружка.