Олимпиадные задачи из источника «8 класс» для 9-11 класса - сложность 1-3 с решениями
8 класс
НазадДокажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.
Каково наименьшее число гирь в наборе, который можно разложить и на 3, и на 4, и на 5 кучек равной массы?
Каждый участник двухдневной олимпиады в первый день решил столько же задач, сколько все остальные в сумме – во второй день.
Докажите, что все участники решили поровну задач.
Может ли во время шахматной партии на каждой из 30 диагоналей оказаться нечётное число фигур?
Докажите, что если <i>a + b + c + d</i> > 0, <i>a > c</i>, <i>b > d</i>, то |<i>a + b</i>| > |<i>c + d</i>|.