Олимпиадные задачи из источника «10 класс» для 10-11 класса - сложность 1-3 с решениями

Целые числа <i>a, b</i> и <i>c</i> таковы, что числа  <sup><i>a</i></sup>/<sub><i>b</i></sub> + <sup><i>b</i></sup>/<sub><i>c</i></sub> + <sup><i>c</i></sup>/<sub><i>a</i></sub>  и  <sup><i>a</i></sup>/<sub><i>с</i></sub> + <sup><i>с</i></sup>/<sub><i>b</i></sub> + <sup><i>b</i></sup>/<sub><i>a</i></sub>  тоже целые. Докажите, что  |<i>a</i>| = |<i>b</i>| = |<i>c</i>|.

Известно число sin α. Какое наибольшее число значений может принимать  а) sin <sup>α</sup>/<sub>2</sub>,   б) sin <sup>α</sup>/<sub>3</sub>?

Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка