Олимпиадные задачи из источника «1997 год» для 4-8 класса - сложность 4 с решениями
а) Каждую сторону четырёхугольника в процессе обхода по часовой стрелке продолжили на её длину. Оказалось, что новые концы построенных отрезков служат вершинами квадрата. Докажите, что исходный четырёхугольник – квадрат. б) Докажите, что если в результате такой же процедуры из некоторого <i>n</i>-угольника получается правильный <i>n</i>-угольник, то исходный многоугольник – правильный.
Банкир узнал, что среди одинаковых на вид монет одна — фальшивая (более легкая). Он попросил эксперта определить эту монету с помощью чашечных весов без гирь, причем потребовал, чтобы каждая монета участвовала во взвешиваниях не более двух раз. Какое наибольшее число монет может быть у банкира, чтобы эксперт заведомо смог выделить фальшивую за<i>n</i>взвешиваний?