Олимпиадные задачи из источника «10 класс» для 8-9 класса - сложность 2-3 с решениями
10 класс
НазадВ выпуклом четырёхугольнике <i>ABCD</i> точки <i>E</i> и <i>F</i> являются серединами сторон <i>BC</i> и <i>CD</i> соответственно. Отрезки <i>AE, AF</i> и <i>EF</i> делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника <i>ABD</i>?
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?
Про положительные числа <i>a, b, c</i> известно, что <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> + <sup>1</sup>/<i><sub>c</sub> ≥ a + b + c</i>. Докажите, что <i>a + b + c</i> ≥ 3<i>abc</i>.
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?