Олимпиадные задачи из источника «11 класс» для 9 класса - сложность 2-3 с решениями
11 класс
НазадПусть <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub>, <i>CC</i><sub>1</sub> – высоты остроугольного треугольника <i>ABC, O<sub>A</sub>, O<sub>B</sub>, O<sub>C</sub></i> – центры вписанных окружностей треугольников <i>AB</i><sub>1</sub><i>C</i><sub>1</sub>, <i>BC</i><sub>1</sub><i>A</i><sub>1</sub>, <i>CA</i><sub>1</sub><i>B</i><sub>1</sub> соответственно; <i>T<sub>A</sub>, T<sub>B</sub>, T<sub>C</sub></i> – точки касания вписанной окружности треугольника <i>ABC</i> со сторо...
В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?