Олимпиадные задачи из источника «11 класс» для 11 класса - сложность 1-4 с решениями

Все имеющиеся на складе конфеты разных сортов разложены по <i>n</i> коробкам, на которые установлены цены в 1, 2, ..., <i>n</i>  у. е. соответственно. Требуется купить такие <i>k</i> из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее <i><sup>k</sup>/<sub>n</sub></i> массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.

  а) Какие коробки следует купить при  <i>n</i> = 10  и  <i>k</i> = 3 ?

  б) Тот же вопрос для произвольных натуральных  <i>n ≥ k</i>.

Можно ли намотать нерастяжимую ленту на бесконечный конус так, чгобы сделать вокруг его оси бесконечно много оборотов? Ленту нельзя наматывать на вершину конуса, а также разрезать и перекручивать. При необходимости можно считать, что она бесконечна, а угол между осью и образующей конуса достаточно мал.

Какие значения может принимать разность возрастающей арифметической прогрессии <i>a<sub>1</sub>, a<sub>2</sub>,..., a<sub>5</sub></i>, все члены которой принадлежат отрезку [0; 3π/2], если числа cos <i>a<sub>1</sub></i>, cos <i>a<sub>2</sub></i>, cos <i>a<sub>3</sub></i>, а также числа sin <i>a<sub>3</sub></i>, sin <i>a<sub>4</sub></i> и sin <i>a<sub>5</sub></i> в некотором порядке тоже образуют арифметические прогрессии.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка