Олимпиадные задачи из источника «2019 год» для 9 класса - сложность 4-5 с решениями

Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$, удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень.

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?

Рассмотрим на клетчатой плоскости такие ломаные с началом в точке $(0,0)$ и вершинами в точках с целыми координатами, что каждое очередное звено идет по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует<i>червяк</i> — фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которых можно разбить на двуклеточные доминошки ровно $n>2$ различными способами, столько же, сколько натуральных чисел, меньших $n$ и взаимно простых с $n$. (Червяки разные, если состоят из разных наборов клеток.)

Есть 100 кучек по 400 камней в каждой. За ход Петя выбирает две кучки, удаляет из них по одному камню и получает за это столько очков, каков теперь модуль разности числа камней в этих двух кучках. Петя должен удалить все камни. Какое наибольшее суммарное количество очков он может при этом получить?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка