Олимпиадные задачи из источника «11 класс» для 8-9 класса - сложность 1-4 с решениями
11 класс
НазадПравильный треугольник со стороной 1 разрезан произвольным образом на равносторонние треугольники, в каждый из которых вписан круг.
Найдите сумму площадей этих кругов.
В равенстве <i>х</i><sup>5</sup> + 2<i>x</i> + 3 = <i>p<sup>k</sup></i> числа <i>х</i> и <i>k</i> – натуральные. Может ли число <i>р</i> быть простым?
На столе выложены в ряд 64 гирьки, причём масса двух любых соседних гирек отличается на 1 г. Требуется разложить гирьки на две кучки с равными массами и равным количеством гирь. Всегда ли это удастся?
Точки <i>D, Е</i> и <i>F</i> – середины сторон <i>ВС, АС</i> и <i>АВ</i> треугольника <i>АВС</i> соответственно. Через центры вписанных окружностей треугольников <i>AEF, BDF</i> и <i>СDE</i> проведена окружность. Докажите, что её радиус равен радиусу описанной окружности треугольника <i>DEF</i>.
На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски?