Олимпиадные задачи из источника «10 класс» для 9 класса - сложность 2-4 с решениями
10 класс
НазадВ одной из вершин шестиугольника лежит золотая монета, а в остальных ничего не лежит. Кощей Бессмертный чахнет над златом и каждое утро снимает с одной вершины произвольное количество монет, после чего тут же кладёт на соседнюю вершину в шесть раз больше монет. Если к исходу какого-то дня во всех вершинах будет поровну монет, Кощей станет Властелином Мира. Докажите, что хоть злата у него сколько угодно, но Властелином Мира ему не бывать.
В треугольнике <i>АВС</i> точки <i>М</i> и <i>N</i> – середины сторон <i>AC</i> и <i>ВС</i> соответственно. Известно, что точка пересечения медиан треугольника <i>AMN</i> является точкой пересечения высот треугольника <i>АВС</i>. Найдите угол <i>АВС</i>.
Каждый день, с понедельника по пятницу, ходил старик к синему морю и закидывал в море невод. При этом каждый день в невод попадалось не больше рыбы, чем в предыдущий. Всего за пять дней старик поймал ровно 100 рыбок. Какое наименьшее суммарное количество рыбок он мог поймать за три дня – понедельник, среду и пятницу?
Докажите, что если в выражении (<i>x</i>² – <i>x</i> + 1)<sup>2014</sup> раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.
Если разделить 2014 на 105, то в частном получится 19 и в остатке тоже 19.
На какие ещё натуральные числа можно разделить 2014, чтобы частное и остаток совпали?