Олимпиадные задачи из источника «8 класс» для 5-7 класса - сложность 2-3 с решениями

Гномы сели за круглый стол и голосованием решили много вопросов. По каждому вопросу можно было голосовать "за", "против" или воздержаться. Если оба соседа какого-либо гнома по какому-нибудь вопросу выбрали один и тот же вариант ответа, то при голосовании по следующему вопросу он выберет этот же вариант. А если они выбрали два разных варианта, то при голосовании по следующему вопросу гном выберет третий вариант. Известно, что по вопросу "Блестит ли золото?" все гномы проголосовали "за", а по вопросу "Страшен ли Дракон?" Торин воздержался. Сколько могло быть гномов?

Три пирата вечером поделили добытые за день бриллианты: по двенадцать Биллу и Сэму, а остальные – Джону, который считать не умел. Ночью Билл у Сэма, Сэм у Джона, а Джон у Билла украли по одному бриллианту. В результате средняя масса бриллиантов у Билла уменьшилась на один карат, у Сэма уменьшилась на два карата, зато у Джона увеличилась на четыре карата. Сколько бриллиантов досталось Джону?

Из клетчатой бумаги вырезана прямоугольная рамка (см. рисунок). Её разрезали по границам клеток на девять частей и сложили из них квадрат 6×6. Могли ли все части, полученные при разрезании, оказаться различными? (При складывании квадрата части можно переворачивать.)<div align="center"><img src="/storage/problem-media/64943/problem_64943_img_2.gif"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка