Олимпиадные задачи из источника «I Олимпиада по геометрии имени И.Ф. Шарыгина (2005 г.)» для 11 класса - сложность 2 с решениями
I Олимпиада по геометрии имени И.Ф. Шарыгина (2005 г.)
НазадДана окружность и точка <i>К</i> внутри неё. Произвольная окружность, равная данной и проходящая через точку <i>К</i>, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.
Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.