Олимпиадные задачи из источника «Заочный тур» для 2-9 класса - сложность 4 с решениями
Заочный тур
НазадВ треугольнике <i>ABC</i> проведена биссектриса <i>AD</i>. Точки <i>M</i> и <i>N</i> являются проекциями вершин <i>B</i> и <i>C</i> на <i>AD</i>. Окружность с диаметром <i>MN</i> пересекает <i>BC</i> в точках <i>X</i> и <i>Y</i>. Докажите, что ∠<i>BAX</i> = ∠<i>CAY</i>.
Вписанная в треугольник <i>ABC</i> окружность касается сторон <i>BC, CA, AB</i> в точках <i>A', B', C'</i> соответственно. Перпендикуляр, опущенный из центра <i>I</i> этой окружности на медиану <i>CM</i>, пересекает прямую <i>A'B'</i> в точке <i>K</i>. Докажите, что <i>CK || AB</i>.
Вокруг треугольника <i>ABC</i> описана окружность. Пусть <i>X</i> – точка внутри окружности, <i>K</i> и <i>L</i> – точки пересечения этой окружности и прямых <i>BX</i> и <i>CX</i> соответственно. Прямая <i>LK</i> пересекает прямую <i>AB</i> в точке <i>E</i>, а прямую <i>AC</i> в точке <i>F</i>. Найдите геометрическое место таких точек <i>X</i>, что описанные окружности треугольников <i>AFK</i> и <i>AEL</i> касаются.