Олимпиадные задачи из источника «Заочный тур» для 9 класса - сложность 4 с решениями
Заочный тур
НазадОтображение $f$ ставит в соответствие каждому невырожденному треугольнику на плоскости окружность ненулевого радиуса, причем выполняются следующие условия:
– Если произвольное подобие $\sigma$ переводит треугольник $\Delta_1$ в $\Delta_2$, то $\sigma$ переводит окружность $f(\Delta_1)$ в $f(\Delta_2)$.
– Для любых четырех точек общего положения $A$, $B$, $C$, $D$ окружности $f(ABC)$, $f(BCD)$, $f(CDA)$ и $f(DAB)$ имеют общую точку.
Докажите, что для любого треугольника $\Delta$ окружность $f(\Delta)$ совпадает с окружностью девяти точек треугольника $\Delta$ .
Пусть $AM$ – медиана неравнобедренного треугольника $ABC$, $T$ – точка касания вписанной окружности $\omega$ со стороной $BC$, $S$ – вторая точка пересечения $\omega$ с отрезком $AT$. Докажите, что вписанная окружность треугольника $\delta$, образованного прямыми $AM$, $BC$ и касательной к $\omega$ в точке $S$, касается описанной окружности треугольника $ABC$.
Пусть $\gamma_A$, $\gamma_B$, $\gamma_C$ – вневписанные окружности треугольника $ABC$, касающиеся сторон $BC$, $CA$, $AB$ соответственно. Обозначим через $l_A$ общую внешнюю касательную окружностей $\gamma_B$ и $\gamma_C$, отличную от $BC$. Аналогично определим $l_B$, $l_C$. Из точки $P$, лежащей на $l_A$, проведем отличную от $l_A$ касательную к $\gamma_B$ и найдем точку $X$ ее пересечения с $l_C$. Аналогично найдем точку $Y$ пересечения касательной из $P$ к $\gamma_C$ с $l_B$. Докажите, что прямая $XY$ касается $\gamma_A$.