Олимпиадные задачи из источника «10 класс» для 3-8 класса - сложность 3-5 с решениями
10 класс
НазадВыпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$.
Прямая пересекает отрезок $AB$ в точке $C$. Какое максимальное число точек $X$ может найтись на этой прямой так, чтобы один из углов $AXC$ и $BXC$ был в два раза больше другого?
Дан выпуклый четырехугольник $ABCD$. Общие внешние касательные к окружностям $ABC$ и $ACD$ пересекаются в точке $E$, к окружностям $ABD$ и $BCD$ – в точке $F$. Докажите, что если точка $F$ лежит на прямой $AC$, то точка $E$ лежит на прямой $BD$.